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DETERMINATION OF THE EFFECT OF
CURRENT AND TRAVEL SPEED OF GAS
METAL-ARC WELDING ON THE MECHAN-
ICAL PROPERTIES OF A36, A516, AND
A514 STEELS

{1 INnTRODUCTION

Background

Gas metal-arc welding (GMAW) is finding increased
usage in Corps of Engineers construction. Although
GMAW technology is relatively new, it has improved
considerably since its introduction. There are now
sophisticated welding power supplies, wire feed sys-
tems, and high-quality welding electrodes. Despite
these improvements, however, the quality of the
weldments depends on the operator’s skill and expe-
rience. Thus, the operator’s experience is generally
the deciding factor in setting the welding variables,
i.e., arc voltage, arc current, and travel speed.

For many years, the only control on welding has °

been by limiting the heat input (measured by Joules
[J] per linear inch of weld). Heat input is determined
by using this simple relation:

. Voltage x Current X
Heat input = “Travel speed [Eq 1]

The heat input limit was generally set to a maxi-
mum of 55 kJ/in. (2167 J/mm). Dorschu and Shultz
and Jackson have shown that for a given set of param-
eters, the strength and toughness of the weld can vary
considerably.! Dorschu devised a method for control-
ling the strength of weldments by limiting the cooling
rate of the weld beads. He developed a formula for the
cooling rate that includes the variables of heat input,
plate thickness, and initial plate temperature. In
general form, this relation is:

Test Plate
. Thickness x (temperature - temperature)
Cooling rate = -
Heat input
[Eq 2]

K. E. Dorschu, “*Control of Cooling Rates in Steel Weld,”
Welding Journal, Vol 47 (February 1968), Research Supple-
ment; and B. L. Shultz and C. E. Jackson, “Influence of Weld
Bead Area on Weld Mechanical Properties,”” Welding Journal,
Vol 52 (January 1973), Research Supplement.

Dorschu has shown that with American Society for
Testing and Materials [ASTM] A201 mild steel up to
2 in. (51 mm) thick, the yield strength of the weld
metal decreases at slow cooling rates; at high cooling
rates, yield strengths can be increased from 15 to 20
ksi (1034 to 137.9 MPa). Shultz and Jackson have
gone one step further and determined that for a
5Ni-Cr-Mo-V steel, the arc voltage has no significant
effect on the cooling rate; cooling rates appear to be
determined by the current and travel speed only.

Shultz and Jackson conclude that there is a clear
relationship between cooling rate and nugget area
which, therefore, becomes a useful indicator of weld
metal mechanical properties under the influence of
weld cooling rate. Shultz and Jackson define nugget
area as the cross-section of a single weld bead. This
nugget area equation is:

Arc current! %%

Nugget area = Constant x Eq3
get area Travel speed®®?? [Eq 3]

Unfortunately, Shultz and Jackson do not describe a
way to determine the voltage, current, and travel
speed limits that will insure proper weld metal strength
levels.

The Corps of Engineers has begun a three-part
research program to determine these limits for various
plate steels and welding electrodes. In the first part of
the study, the limits on electrode travel speed and
voltage for shielded metal-arc welding electrodes
were determined on the basis of bead-on-plate studies.?
These limits were established using amperage values
contained in the American Welding Society (AWS)
specifications.® Operating ranges were also determined
for GMAW electrodes.

During the second part of the study, which is in-
tended to refine the limits of current, travel speed.
and voltage using their interrelationship with nugget
area based on weld joint mechanical properties, the
limits for shielded metal-arc welding electrodes in
combination with carbon steel, pressure-vessel steel,
and high-strength, low-alloy steel are being investi-

2R. A. Weber, Determination of Arc Voltage, Amperage,
and Travel Speed Limits by Bead-on-Plate Welding, Technical
Report M-197/ADA033684 (U.S. Army Construction Engi-
neering Research Laboratory [CERL], December 1976).

3Specifica!ion for Mild Steel Covered Arc Welding Elec-
trodes, American Welding Society (AWS) A5.1-69 (AWS 1969).
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gated.® Limits for the high-strength, low-alloy steel
are also being determined.

The third part of the study will seek to confirm or
adjust these limits with regard to restraint and crack-
ing in the weld joints.

Objective

The objective of this report, which addresses the
GMAW portion of the second part of the Corps of
Engineers weld limits study, is to present the limits
on current and travel speed—in particular, nugget
area—as defined by the results of tests to determine
the tensile and impact properties of butt joint welds
produced by fully automatic GMAW in carbon steel
(A36), pressure-vessel steel (A516), and high-strength,
low-alloy steel (AS14).

Mode of Technology Transfer

The information in this report is part of a long-
term research effort designed to maintain Corps of
Engineers Guide Specifications CE-05141 and CE-
15116, and Army Technical Manuals (TM) 5-805-7
and 9-237.5

9 APPROACH

Materials
Table 1 identifies the plate steel and electrodes used
in this investigation. Electrode types were selected for

4R. A. Weber, Determination of the Effect of Current and
Travel Speed of Shielded Metal-Arc Welding on the Mechanical
Properties of A36, A516, and A514 Steels, Interim Report
M-248/ADA06231 (CERL, November 1978).

5Welding, Structural, U.S. Army Corps of Engineers Guide
Specification, CE-05141 (April 1975); Welding, Mechanical,
U.S. Army Corps of Engineers Guide Specification, CE-15116
(October 1974); Welding: Design, Procedures, and Inspection,
Army Technical Manual (TM) 5-805-7/Air Force Technical
Order AFM 8844, Chapter 7 (Departments of the Army and
the Air Force, March 1968), a1d Operators Manual: Welding
Theory and Application, TM $-237 (Department of the Army,
October 1976).

use with plate material based on the AWS Srrucrural
Welding Code and the common usage for Corps of
Engineers construction.® One type of plate steel was
chosen from each of the three categories of steel used
frequently in Corps of Engineers construction:

1. Carbon steel (ASTM A36)
2. Pressure-vessel steel (ASTM A516)
3. High-strength, low-alloy steel (ASTM A514).

Table 2 lists the specification limits for each of the
materials used in this investigation.

Experimental Procedure

The weld joint used in this investigation was a 60-
degree included angle, single-V butt joint with a
1/8 in. (3.2 mm) root opening (Figure 1). The weld
length was about 30 in. (762 mm). The completed
joint was about 12 x 30 in. (305 x 762 mm). Each
material type required 9 joints—a total of 27 joints.
All plate material was cut and beveled using an oxy-
acetylene cutting apparatus, and then surface ground
to remove oxides and slag from the joint area. X-ray
radiography was used to non-destructively examine
each completed weldment for soundness.

One macrospecimen, three tensile specimens. and
twelve impact (dynamic tear) specimens were machined
from each completed sound weld. (Figure 2 shows a
schematic of specimen locations as machined from
the weldments.)

The impact specimens were machined so that half
were notched in weld metal and half were notched
adjacent to the weld in the heat affected zone (HAZ).
They were then tested in temperatures ranging from
-40 to +40° C according to ASTM standards.”

SStructural Welding Code, D1.1-15 (AWS, 1975; revised
1976 and 1977).

T«ASTM Proposed Method for 5/8 in. (16 mm) Dynamic
Tear Test of Metallic Materials,” 1976 Annual Book of ASTM
Standards, Part 10 (American Society for Testing and Materials
[ASTM], 1976).

Table 1
Materials Used for GMAW Butt Joints

Plate Materisl
ASTM No. Thickness, in. (mm)
A36 3/4 (19)
A516, Grade 70 1(25.4)

AS514,Grade F 3/4(19)

Electrode Diameter, in. (mm)
E70S-3 1/16 (1.6)
E70S-3 1/16 (1.6)
E110S 1/16 (1.6)
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Table 2
Mechanical Property Requirements for Electrodes and Plate Material
Minimum Ultimate
Yield Tensile
Strength Strength
Material Specification ksi (MPa) ksi (MPa)
E708-3 GMAW AWS 60 72 minimum
electrodes AS5.18-69 414) (496)
E110S GMAW AWS 98 110 minimum
electrodes A5.18-69 (676) (758)
A36 plate ASTM 36 58-80
A36 (248) (400-552)
AS516 plate ASTM 38 70-90
AS16 (262) (483-621)
A514 plate ASTM 100 110-130
AS514 (689) (758-896)

Two of the tensile specimens were machined from
the weld metal; the third was machined from the HAZ.
All the tensile specimens were tested at ambient
temperature according to Military Standard (MIL-STD)
418C.® The tensile test resultsinclude the yield strength,
ultimate tensile strength, true fracture stress, and the
true fracture strain. (The true fracture strain, which
is the natural logarithm of the initial area divided by
the final area, was used to indicate the ductility exhib-
ited by the tensile specimen. It is a dimensionless
number and shows increasing ductility with higher
numbers.)

The macrospecimens were polished and etched
using ammonium persulfate etchant, and visually
examined for small flaws not shown by radiography.
The nugget area was determined using the nomograph
presented by Shultz and Jackson (Figure 3).°

Welding Procedure

Arc voltage. current, and travel speed for all speci-
mens were selected based on the results of a previous
study.'® Table 3 shows the welding variables for the

sMilimry Standard Mechanical Tests for Welded Joints,
MIL-STD418C (June 1972).

9B. L. Shultz and C. E. Jackson, “Influence of Weld Bead
Area on Weld Mechanical Properties,” Welding Journal, Vol 52
(Janaury 1973), Research Supplement.

1OR. A. Weber, Determination of Arc Voltage, Amperage.
and Travel Speed Limits by Bead-on-Plate Welding, Technical
Report M-197/ADA033684 (CERL, December 1976).

weldments using 1/16 in. (1.6 mm) diameter E70S-3
and E110S GMAW electrodes and direct current.
reverse polarity. Figures 4, 5, and 6 show typical
cross-sections of the A36, AS16, and AS514 weld-
ments, respectively. The joint design was the same
for all three steels.

The heat input for the A36 and AS516 weldments
varied from 15 to 72 kJfin. (591 to 2835 J/mm),
while the nugget area varied from 0.035 to 0.150
sq in. (24 to 100 mm?). For the A514 weldments.
the heat input varied from 10 to 50.4 kJ/in. (394
to 1984 J/mm), and the nugget area varied from
0.026 to 0.130 sq in. (16.8 to 80 mm?).

3 DATA ANALYSIS AND DISCUSSION

A36 Weldments
Tensile Test Results

Table 4 and Figures 7 and 8 present the tensile
test results for the E70S-3 weld metal and the A36
HAZ specimens over the respective ranges of heat input
and nugget area tested. The weld metal yield strengths
are spread over 21.1 ksi (145.4 MPa) range. Figures
7 and 8 show the weld metal strength data plotted
against heat input and calculated nugget area. respec-
tively. Both figures show a linear trend of weld metal
yield strength decreasing as heat input and nugget
area increase. To determine which parameter (heat
input or nugget area) was a more sensitive predictor
of yield strength. linear correlation coefficients (r)



Table 3
Weld Variables for GMAW Weldments of A36, A516, and A514 Steels*

Specimen Material Electrode Current Volts
B22 A36 E708-3 400 30
B23 A36 E70S8-3 400 30
B24 A36 E70S-3 400 30
B2S A36 E708-3 300 25
B26 A36 E708-3 300 25
B27 A36 E70S8-3 300 25
B28 AS516 E70S-3 300 25
B29 AS16 E70S-3 300 25
B30 A516 E70S8-3 300 25
B3] AS516 E70S-3 400 30
B32 AS16 £708-3 400 30
B33 A516 E70S-3 400 30
B34 AS14 E1105 350 24
B3S AS514 E1105 350 24
B36 AS514 E1105 350 24
B37 AS14 E1105 250 20
B38 A514 E1105 250 20
B39 AS14 E1105 250 20

1PM Nugget

(min/s) Heat Area Plate Number
Travel Input sq in. Thickness of
Speed (kJ/in.)(J/mm) (mm?) in. (mm) Passes
10 72 (2835) 0.150 (100) 0.7 (19 5
20 36 (1417) 0.080 (52) 0.7 (19 6
30 24 (945) 0.055 (40) 0.75 (19) 8
30 15 (591) 0.035 (24) 075 (19 11
20 22 (886) 0.050 (35 0.7 (19) 8
10 45 (1772) 0.095 (65) 0.75 (19 6
10 45 (1772 0.095 (65) 1.00(254) 19
20 22 (886) 0.050 (35) 1.00 (254) 30
30 15 (591) 0.035 (24) 1.00 (25.4) 44
30 24 (945) 0.055 (40) 1.00(25.4) 34
20 36 (1417) 0.080 (52) 1.00 (254) 22
10 72 (283%) 0.150 (100) 1.00(254) 10
10 50.4 (1984) 0.130 (80) 0.75 (19) 8
20 25.2 (992) 0.065 (42) 0.75 (19) 19
30 16.8 (661) 0.045 (30) 075 (19 27
10 30.0 (1181) 0.070 (45) 0.75 (19 14
20 15.0 (591) 0.038 (26) 0.75 (19 29
30 10.0 (394) 0.027 (18) 0.75 (19 31

*Mechanical properties for the range of heat inputs and nugget area are listed in Tables 4, 5, and 6.

were computed for both.* The coefficients for heat
input (r=-0.967) and nugget area (r=-0.969) were not
significantly different, indicating that for the test
conditions under study, both were equal predictors
of yield strength. But a review of the difference between
the heat inputs and the nugget areas tested indicater
that relative differences between them were insig:ifi-
cant; in essence, one was a scaled version of the other.
This made it impossible to determine the relative
sensitivities of the two welding parameters to any of
the physical test results on the A36 steel and weldments.

The HAZ yield strengths were relatively uniform—
between 44 and 57 ksi (303 and 393 MPa). The yield
strength did not correlate significantly with either
nugget area (r=-0.250) or heat input (r=-0.235), and
therefore neither could be used to predict HAZ yield
strength.

*The correlation coefficient is the ratio of the explained
variation to the total variation. For zero explained variation,
the correlation coefficient is zero; for completely explained
variation, the coefficient is t1. All other coefficients vary
between +1 and -1, with increasingly explained variations
approaching +1.

The ultimate tensile strength (UTS) of the weld
metal specimens varied between 72 and 88 ksi (496
and 607 MPaj; increasing heat inputs and nugget areas
were associated with decreasing UTS. The linear
- veelation coefficients for the UTS of the weld metal

> heat input and nugget area were -0.897 and -0.909,
respectively. The trends observed in the weld metal
UTS results are similar to those observed for the yield
strength data.

The UTS of the HAZ specimens varied between 69
and 75 ksi (476 and 517 MPa). As with the yield
strengths, the HAZ UTS did not correlate significantly
with either heat input (r=0.136) or nugget area (r=
-0.151); therefore, neither could be used to predict
HAZ tensile strength.

The true fracture stress and the true strain at
fracture were calculated to provide information on
the strength and ductility of the weldments. There was
no significant correlation between either heat input
or nugget area with these two quantities.

Impact Test Results
Figures 9 through 14 graph the dynamic tear
(DT) impact energy vs test temperature for each

S
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Table 4
Tensile Data for GMAW Weldments of A36 Steel .
Weld Ultimate Tensile True Fracture :
Specimen Tensile Properties Strength Stress True Strain at 1
Code ksi* ksi ksi Fracture
Weid Metal
B22 53.9 73.4 168.9 1.176 :
(A36) 54.1 72.0 160.5 1.204 i
B23 65.5 80.0 119.3 0.662 3
(A36) - 620 714 157.0 1.064 1
B24 68.3 82.4 149.7 0.847
(A36) 67.1 80.6 1375 0.741 3
B2S 75.0 88.2 168.6 0.909
(A36) 70.2 83.4 160.2 0.909
B26 714 87.0 165.8 0.946
(A36) 69.7 84.4 156.2 0.859
B27 61.4 75.2 161.3 1.092 3
(A36) 61.2 76.0 147.0 0.959
HAZ
B22 53.1 74.2 150.8 1.024
(A36)
B23 44.1 69.4 161.8 1.176
(A36)
B24 149.6 71.0 163.1 1.176
(A36)
B25 56.0 75.2 143.1 0.972
(A36)
B26 57.7 75.2 117.6 0.776
(A36)
B27 49.1 70.0 145.3 1.064
(A36)

*1 ksi = 6.89 MPa

weldment. Each figure contains the ail-weld metal General

impact results and the associated HAZ impact re- In a general analysis of the mcchanical properties of

sults. The impact energy at a given temperature for the A36 weldments, it is important to compare the

the HAZ specimens is lower than that of the all-weld properties of the weld metal and HAZ to that required
] metal specimens. The transition temperatures* of the tor the base plate and electrodes. Table 2 indicates that

HAZ specimens were all above 20° C, whereas the tran- the AWS A5.18 minimum yield strength of the E70S-3
sition temperatures for the all-weld metal specimens electrode is 60 ksi (414 MPa); the A36 steel is 36 ksi
were below 12°C (Figures 15 and 16). The linear corre- (248 MPa)."' As indicated in Figures 7 and 8, all the
lation coefficient of HAZ transition temperatures vs HAZ yield strengths significantly exceeded the specified
heat input or nugget area was low (-0.258 and -0.270, minimum and the reported actual yield strength (36
respectively). The correlation coefficient of the weld and 37 ksi [248 and 255 MPa}, respectively) of the

metal transition temperatures vs heat input or nugget A36 base plate over the respective ranges of heat
aea was relatively higher (0.020 and 0.616, respec- input and nugget area investigated. At heat inputs
tively). but still ot only marginal significance. and nugget areas greater than 50 kJ/in. (1970 }/mm)

*Note: transition temperature, for the purpose of this ———
report, was computed as the knee of the DT curve at the lower ”Specf'ﬁcﬂion for Mild Steel Base Welding Electrodes,
shel. AWS 5.18-69 (AWS, 1969).




and 0.108 sq in. (0.696 mm?) respectively, the weld
metal yield strengths fall below the 60 ksi (414 MPa)
weld metal minimum, but not below the 36 ksi (248
MPa) base plate criterion.

The UTS of the HAZ specimens fell within the
specified range of 58 to 80 ksi (400 to 552 MPa) for
A36 steel and about equal to the reported value of 71
ksi (490 MPa).!> The UTS of all the weld metal speci-
mens exceeded the 72 ksi (497 MPa) minimum require-
ment. However, at the highest heat input (72 kJ/in.
[2836 J/mm]) and the largest nugget area (0.150 sq
in. [0.967 mm?}), the UTS of the weld metal de-
clined to the minimum requirement.

The A36 base plate and the E70S-3 electrode
do not have specified DT impact requirements. How-
ever, Barson and Rolfe have reported that the transition
temperature for A36 steel is about -6° C.'* Figures 15
and 16 indicate that the HAZ and weld metal have
significantly higher transition temperatures than the
-6° C value reported for the base plate. Thus, the
impact resistance of the HAZ and weld metal between
+30 and -6° C is significantly less than the base plate,
and should be considered in the design and fabrication
of A36 welded components if impact resistance is
critical.

During test plate fabrication, side wall fusion and
depth of penetration become increasingly difficult to
control at heat inputs and nugget areas less than
20 kJ/in. (788 J/mm) and 0.045 sq in. (0.290 mm?),
respectively. This, when coupled with the above weld
metal yield strength criteria, places the acceptable
range for heat input at 20 to 50 kJ/in. (788 to 1970
J/mm) and nugget area at 0.045 to 0.108 sq in. (0.290
to 0.696 mm?) for the GMAW using the E70S-3
electrodes and carbon dioxide shield gas on A36 steel.

A516 Weldments
Tensile Test Results

Table 5 and Figures 17 and 18 present the tensile
test results for the E70S-3 weld metal and the AS516
HAZ specimens. The weld metal yield strengths are
spread over a 21 ksi (145 MPa) range varying from

V2 Structural Alioys Handbook: Vol 1, Mechanical Proper-
ties Data Center (Battelle’s Columbus Laboratories, 1977).

13). M. Barson and S. T. Rolfe, “Correlation Between
Kjc and Charpy V-notch Test Results in the Transition Tem-
perature Range,” Impact Testing of Metals, ASTM STP 466
(ASTM, 1970).

52.1 to 73.2 ksi (359.3 to 504.8 MPa). The weld metal
yield strengths per heat input or nugget area for the
AS16 weldments with the E70S-3 electrodes are
nearly identical to the A36 weldments with the same
electrodes (Table 4 vs Table 5). Figures 17 and 18
show the weld metal yield strength data plotted
against heat and nugget area, respectively. Both figures
show a linear trend of weld metal yield strength de-
creasing as heat input and nugget area increase. The
linear correlation coefficient for the weld metal yield
strength vs heat input is -0.917; for the weld metal
yield strength vs nugget area, it is -0.923. The A516
weldment test series used the same range of nugget
areas and heat inputs as the A36 series. Thus, as for
the A36 series, the relative difference between nugget
area and heat input values is insufficient to evaluate
the relative sensitivities of the two parameters to the
physical test results.

The HAZ yield strengths varied between 68.5 and
56.2 ksi (472.4 and 387.5 MPa), with increasing heat
inputs and nugget areas producing lower yield strengths
(Figures 17 and 18). The linear correlation coefficient
for HAZ yield strength vs heat input was -0.718; the
linear correlation coefficient for HAZ yield strength
vs nugget area was -0.723. Thus, the HAZ yield
strength data of the AS516 weldments gave closer
correlation with heat input and nugget area than the
A36 specimens.

The UTS of the weld metal specimens varied be-
tween 69 and 89 ksi (476 and 614 MPa), with in-
creasing heat inputs and nugget areas associated with
decreasing UTS. As with the yield strengths, the UTS
of the A516 weldments for each heat input or nugget
area was nearly identical to the A36 weldments with
the same electrodes. The linear correlation coefficients
for the weld metal vs heat input and nugget area were
-0.866 and -0.871, respectively.

The UTS of the A516 HAZ specimens varied
between 74 and 88 ksi (510 and 607 MPa), with
increasing heat inputs and nugget areas associated
with decreasing UTS. The linear correlation coeffi-
cients for the HAZ UTS vs heat input and nugget
area were -0.634 and -0.633, respectively. As with
the yield strengths, the AS16 HAZ UTS correlated
better with heat input and nugget area than did the
A36 HAZ UTS.

The true fracture stress and the true strain at
fracture were calculated for all specimens tested to
provide an indication of the strengths and ductility

el




Table §
Tensile Data for GMAW Weldments of A516 Steel

Weld Ultimate Tensile True Fracture
Specimen Tensile Properties Strength Stress True Strain at

Code ksi®*

ksi ksi Fracture

Weld Metal

78.2
76.0

82.6
80.2

84.2
85.8

88.6
79.2

76.2
73.2

70.2
69.2

HAZ

B28
(A516)

B29
(A516)

B30
(A516)

B31
(A516)

B32
(AS516)

B33
(A516)

*1 ksi = 6.89 MPa

of the weldments. There was no significant correlation
between either heat input or nugget area with these
two quantities.

Impact Test Results

Figures 19 through 24 graph the DT impact energy
absorbed vs test temperature for each weldment for a
range of nugget areas from 0.015 sq in (10 mm?) to
0.095 sq in (65 mm?). Each figure contains the all-
weld metal impact results and the associated HAZ
impact results. As with the A36 impact tests, the
impact energy at a given temperature for the HAZ
specimens is lower than those of the all-weld metal
specimens. With the exception of the highest heat
input and nugget area specimens (72 kJ/in. (2836
Jimm] and 0.150 sq in. {0967 mm?]), the transi-
tion temperatures of the HAZ specimens were all

86.2
78.8
85.8
87.6
84.0

74.3

above 20° C (Figures 25 and 26). The transition tem-
peratures of the all-weld metal specimens varied be-
tween 25 and 10° C, with the exception of the 72
kJ/in. (2836 J/mm) heat input specimen that had a
transition temperature of -30° C. Additionally, Figures
25 and 26 illustrate that for each heat input and
nugget area, the HAZ specimens have higher transi-
tion temperatures than the all-weld metal specimens.
Unlike the A36 DT test results, both HAZ and weld
metal transition temperatures decreased with increas-
ing heat input and nugget area. The linear correlation
coefficients for the HAZ and weld metal transition
temperatures vs heat input and nugget area varied
between -0.825 and -0.831, indicating a significant
level of linear correlation. (The two HAZ transition
temperatures that were above 40° C were not included
in the linear regression analysis; if these values were




used, they would have significantly altered the results
of the regression analysis.)

General

The mechanical properties of the A516 weldments,
when compared with the specification requirements,
indicate that the yield strength of the E70S-3 electrode
drops below the 60 ksi (414 MPa) minimum require-
ment at heat inputs and nugget areas near 50 kJ/in.
(1970 J/mm) and 0.105 sq in. (0.677 mm?), respec-
tively (Figures 17 and 18). But none of the HAZ
weld metal yield strengths dropped below the 38 ksi
(262 MPa) minimum yield strength specified for the
base plate or the reported value for base plate yield
strength of 45 ksi.

The UTS of the weld metal specimens dropped
below the 72 ksi (497 MPa) minimum requirement of
A518 at heat inputs and nugget areas greater than
60 kJ/in. (2864 J/mm) and 0.127 sq in. (0.819 mm?),
respectively. The UTS of the HAZ specimens were
within the specified 70 to 90 ksi (483 to 621 MPa)
range for ASTM AS516 base plate.

Neither the A516 plate nor the E70S-3 electrodes
have specified DT impact requirements. But it has
been reported that the transition temperature for
the AS16 steel is -73° C.* Figures 25 and 26 indicate
that the HAZ and weld metal have significantly higher
transition temperatures than the -73° C value reported
for the base plate. Thus, the impact resistance of the
HAZ and weld metal may be significantly less than the
base plate, and should be considered in the design and
fabrication of A516 welded components if impact
resistance is critical.

As with the A36 plate, side wall fusion and depth
of penetration became increasingly difficult to control
at heat inputs and nugget areas less than 20 kJ/in.
(788 J/mm) and 0.045 sq in. (0.290 mm?), respec-
tively. This, when coupled with the weld metal yield
strength criterion, places the acceptable range for heat
input at 20 to 50 kJ/in. (788 to 1970 J/mm) and the
nugget area at 0.045 to 0.105 sq in. (0.290 to 0.677
mm?) for the GMAW using the E70S-3 electrodes
and carbon dioxide shield gas on A516 steel.

145, M. Barson and S. T. Roife, “Correlation Between
Kjc and Charpy V-notch Test Results in the Transition Tem-
perature Range,” Impact Testing of Metals, ASTM STP 466
(ASTM, 1970).

AS514 Weldments

Tensile Test Results

Table 6 and Figures 27 and 28 present the tensile
test results for the E110S weld metal and AS14 HAZ
specimens over the ranges of heat input and nugget
areas tested. With the exception of one test specimen
(yield strength 86.1 ksi [593.7 MPa]), the weld metal
yield strengths were between 105 and 144 ksi (724
and 993 MPa). Figures 27 and 28 show the weld metal
yield strength data plotted against heat input and
nugget area, respectively. Both figures showed a
linear trend (r = -0.752 for yield strength vs heat
input and r = -0.747 for yield strength vs nugget
area) of weld metal yield strength decreasing as heat
input and nugget area increase.* As with the A36 and
AS16 test series, the relative difference between
nugget area and heat input values is insufficient to
evaluate the relative sensitivity of the two parameters
to the physical test results.

The HAZ yield strengths varied between 47 and
137.4 ksi (324 and 947.5 MPa). The HAZ yield strengths
did not correlate very well with either heat input (r =
-0.491) or nugget area (r = -0.510), but tended to de-
crease with increasing heat inputs and nugget areas.
The extremely low HAZ yield strength, 47 ksi (324
MPa), of the highest heat input and largest nugget
area specimen (B-34) occurred because the heat of
welding changed the microstructure of the base material
in the HAZ from a quench and tempered martensitic
structure to a pearlitic/banitic structure. For this
reason, the highest heat input and nugget area specimen
was not used in the linear regression analysis of the
HAZ yield strengths.

The UTS of the weld metal specimens varied between
114 and 150 ksi (786 and 1034 MPa). The weld metal
UTS did not correlate very well with either heat input
(r = -0.461) or nugget area (r = -0.462), but as with
yield strength, tended to decrease with increasing heat
input and nugget area. The UTS of the two specimens
(B-34) with defects was not used in the regression
analysis.

The UTS of the HAZ specimens varied between
69.5 and 140 ksi (479.3 and 966 MPa). As with the
HAZ yield strengths, the HAZ UTS did not correlate
very well with either heat input (r = -0.503) or nugget

*Two weld metal specimens contained defects; their test
results were not used to evaluate the correlations.
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Table 6
Tensile Data for GMAW Weldments of A514 Steel

Weld Ultimate Tensile True Fracture
Specimen Tensile Properties Strength Stress True Strain st
Code (ksi)* (ksi) (ksi) Fracture
Weld Metal

B34 86.1 1145 140.2 0.346 (defect)
(AS14) 111.3 130.1 2933 1.190

B35 114.8 120.5 225.8 1.092
(AS14) 105.3 114.3 137.7 0.318 (defect)

B36 118.8 125.3 274.2 1.324
(A514) 116.3 123.3 2510 1.248

B37 116.5 124.3 234.0 1.119
(A514) 118.1 134.5 240.0 1.038

B38 130.5 136.0 287.0 1.219
(AS514) 135.3 146.0 259.6 1.011

B39 1434 1444 296.2 1.248
(A514) 140.0 1494 3125 1.161

HAZ

B34 46.9 69.5 144.7 1.064
(A514)

B35 110.1 118.1 276.3 1.370
(A514)

B36 107.8 116.5 2374 1.219
(A514)

B37 103.5 112.3 250.9 1.324
(A514)

B38 1374 140.5 284.0 1.105
(A514)

B39 113.0 120.5 2571 1.248
(A514)

*1 ksi = 6.89 MPa

area (r = -0.519), but tended to decrease with increas-
ing heat inputs and nugget areas. The high heat input/
largest nugget area HAZ specimen UTS results were not
used in the linear regression analysis because of the
phase change.

Impact Test Results

Figures 29 through 34 graph the DT impact energy
vs test temperature for each weldment. Each figure
contains the all-weld metal impact results and the
associated HAZ impact results. In all cases, the impact
energy at a given temperature for the HAZ specimens
is lower than that of the all-weld metal specimens.
Additionally, it appears that, for the range of tem-
peratures tested (-40 to +40° C),; the HAZ specimens
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were all on the lower shelf and the all-weld metal
specimens were on the upper shelf. Thus, it was impos-
sible to compare the influence of heat input and nugget
area on transition temperatures for either the HAZ or
weld metal specimens. But the HAZ specimens were
all on the lower shelf and the weld metal specimens
on the upper shelf; this, then, would indicate that
the HAZ transition temperatures were all above 30
or 40* C and the weld metal transition temperatures
were below -30°C,

General

The mechanical properties of the A514 weldments.
when compared with the specification requirements.
indicate that the yield strength of the E110S weld




metal drops below the 9¥ ksi (676 MPa) minimum
requirement at heat inputs and nugget areas greater
than 55 kJ/in. (2167 J/mm) and 0.130 sq in. (0.838
mm?), respectively (Figures 27 and 28). The HAZ
yield strengths dropped below the 100 ksi (690 MPa)
minimum ASTM AS514 base plate requirement at
heat inputs and nugget areas greater than 37 kl/in.
(1457 J/mm) and 0.087 sq in. (0.561 mm?), respec-
tively. But it should be remembered that the HAZ
values are based on linear regressions and had suspic-
iously low correlation coefficients that did not include
the highest heat input specimens.

The weld metal did not drop below the 110 ksi
(759 MPa) minimum required for the entire heat
input and nugget area test range. But the HAZ UTS
dropped below the 110 ksi (759 MPa) minimum UTS
base plate requirement at heat inputs and nugget areas
greater than 36 kJ/in. (1418 J/mm) and 0.085 sq in.
(0.548 mm?), respectively. But, as for the HAZ ;ield
strengths. the HAZ UTS are based on linear regressions
that have correlation coefficients less than -0.52.

As with the previous test series, neither the A514
plate or the E110S electrodes have specified DT
impact requirements. But the reported transition
temperature of the AS14 steel, -73° C when compared
to the impact test data, indicates that the HAZ transi-
tion temperatures are all significantly higher (above
30° C). Thus, for the most common operating tem-
peratures, the impact resistance of the HAZ is signi-
ficantly less than the base plate and should be con-
sidered in the design and fabrication of A514 welded
components if impact resistance is critical.

As with the other tests, plate side wall fusion and
depth of penetration becomes increasingly difficult
to control at heat inputs and nugget areas below
15 kJ/in. (591 J/mm) and 0.038 sq in. (0.245 mm?),
respectively. This, coupled with the HAZ yield strength
and UTS restrictions, makes an acceptable range of
heat input at 15 to 30 kJ/in. (591 to 1182 J/mm)
and nugget area at 0.038 to 0.069 sq in. (0.245 to
0.445 mm?) for the GMAW using the E1108S electrode
and the argon plus 2 percent oxygen on A514 steel.
The upper limits, 30 kJ/in. (1182 J/mm) and 0.069
sq in. (0.445 mm?), were chosen conservatively be-
cause of the low correlation coefficients for the HAZ
test data and the tendency of the HAZ microstructure
to change at high heat inputs.

4 concLusions

The following conclusions are based on the results
of research into the effects of weld variables on the
mechanical properties of deposited weld metal and
HAZ for A36, A514, and A516 weldments.

1. Sound welds can be produced with the E70S-3
and E1108S electrodes used in this investigation.

2. The HAZ impact energy of A36 and AS16
weldments was generally lower than that of the weld
metal, while the yield strength showed varying results.
The impact energy of all the weldments showed limited
dependency on the weld variables, exhibiting an effect
only at the highest heat inputs (72 kJ/in. [2836 J/mm])
and largest nugget areas (0.150 sq in. [100 mm?]).

3. There are not enough data to determine the
maximum heat input and nugget area for A514 weld-
ments because of the microstructural change in the
HAZ caused by the heat of welding. Although the
data indicate that the HAZ yield strength and UTS
fall below the specification minimums at 36 kl/in.
(1418 J/mm) and 0.085 sq in. (0.554 mm?), these
values are not specific because of the data’s poor
correlation coefficients.

4. A36 steel weldments using E70S-3 GMAW
electrodes can be produced with heat inputs be-
tween 20 and 50 kJ/in. (787 and 1968 J/mm) and
nugget areas between 0.045 and 0.108 sq in. (29 and
69.7 mm?).

5. A516 steel weldments with E70S-3 GMAW
electrodes can be made with heat inputs between 20

~and 50 kJ/in. (787 and 1968 J/mm) and nugget areas
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between 0.045 and 0.104 sq in. (29 and 67 mm?).

6. Fabrication of AS14 steel weldments with
E110S GMAW electrodes can be limited to a minimum
heat input of 15 kJ/in. (591 J/mm) and a nugget area
of 0.038 sq in. (26 mm?).

7. The designer must consider service temperatures
whenever A36, A514, and A516 weldments are to be
used in a structure. Tensile properties which meet
specification requirements may not assure adequate
performance at low temperatures. Such features can
only be determined by an adequate impact test.
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Figure 1. Joint design used for GMAW of A36, A514, and A516 steel.
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Figure 2. Schematic showing specimen location as machined from weldment.
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Figure 15. Dynamic tear transition temperature vs heat input for A36 steel weldments.
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Figure 16. Dynamic tear transition temperature vs nugget area for A36 steel weldments.
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. Dynamic tear transition temperature vs heat input for A516 steel weldments.
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Figure 26. Dynamic tear transition temperature vs nugget area for A516 steel weldments.
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Figure 27. Weld metal and HAZ tensile and yield strength vs heat input for A514 steel
weldments.
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